Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica.

نویسندگان

  • Nicholas M Teets
  • Yuta Kawarasaki
  • Richard E Lee
  • David L Denlinger
چکیده

Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica.

The Antarctic midge, Belgica antarctica, is exposed to frequent periods of dehydration during its prolonged larval development in the cold and dry Antarctic environment. In this study, we determined the water requirements of the larvae and the mechanisms it exploits to reduce the stress of drying. Larvae lost water at an exceptionally high rate (>10%/h) and tolerated losing a high portion (>70%...

متن کامل

Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae.

In this study, we examined the effects of repeated cold exposure (RCE) on the survival, energy content and stress protein expression of larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Additionally, we compared results between larvae that were frozen at -5°C in the presence of water during RCE and those that were supercooled at -5°C in a dry environment. Although >95% ...

متن کامل

Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica.

Aquaporins (AQPs) are water channel proteins facilitating movement of water across the cell membrane. Recent insect studies clearly demonstrate that AQPs are indispensable for cellular water management under normal conditions as well as under stress conditions including dehydration and cold. In the present study we cloned an AQP cDNA from the Antarctic midge Belgica antarctica (Diptera, Chirono...

متن کامل

Function and immuno-localization of aquaporins in the Antarctic midge Belgica antarctica.

Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercur...

متن کامل

Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of insect physiology

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 2012